

Why Digital?

A survey of communication technology

Chris Petersen, K9EQ

- Digital and FM: The good, the bad, and the ugly
- Something for nothing? The stuff that matters
- Popular modes
- What do Ham's need?
- Dstar vs Fusion

Digital VS **Inexpensive & simple** Complexity Variable & noisy Consistent Single "channel" Multiple "channels" Community Isolation Old and stagnant Enabling

Digital Parameters

Modulation: OOK, ASK, FSK, GMSK, C4FM Bandwidth: Modulation index Bit rate: Voice, data, FEC Encoding/compression (GSM, AMBE, MP3)

Modulation

OOK: On Off Keying

FSK: Frequency Shift Keying GMSK: Gaussian Mean Shift Keying C4FM: Constant Envelope 4-Level FM

0 0

0 1

Spectrum Examples - Dstar & FM

10 KHz span in green

C4FM Spectrum

- The **Magenta** (purple) trace is the C4FM signal.
- The **Cyan** (blue-ish) trace is a +/- 5 kHz analog FM signal heavily modulated by a male voice.
- The **Yellow** trace is the same transmitter with no modulation present.
- 20 KHz span in red
- 10 KHz span in green

Bandwidth

Bandwidth: Modulation index h = Freq Dev / Audio Freq Broadcast FM = 75/20 = 3.75Ham FM = 5/3.5 = 1.4C4FM = 1.0Narrow band FM = 2.5/3.5 = 0.7Dstar = 0.5

Increasing modulation index by 2 increases the signal to noise by 8!

AMBE Vocoder

Popular Modes

Dstar P25 Phase 1 & 2 MotoTurbo DMR (Tier I (pDMR), II, III) **IDAS/NXDN** Fusion

Bit Rate

HDR	Voice	FEC	Data

Mode	Bit Rate	Voice	Bandwidth	Notes
Dstar	4,800	2,400	10 KHz	
IDAS/NXDN	4,800	3,600	6.25 KHz	
DMR	7,200	2,400?	12.5 KHz	TDMA, 2 voice channels
Fusion DN	9,600	4,800	12.5 KHz	Supports digital, more FEC
Fusion VW	9,600	7,200?	12.5 KHz	Better sounds, lower FEC

Subjective Vocoder Performance

Dstar Performance

Quality of analog signal	Link to recording	Comments about analog signal quality	Comments about digital signal quality		
12dB unweighted SINAD (13dB CCITT)	<u>12dB</u> <u>SINAD</u> <u>Test</u>	Analog signal is copyable by the majority of listeners with little or no difficulty.	Noticeable degradation of the digital stream, but still generally copyable speech. At this level, it takes 2-5 seconds before signal lock is achieved.		
7dB unweighted SINAD (10dB CCITT)	7dB <u>SINAD</u> <u>Test</u>	Analog signal is quite noisy: Copyable by experienced operators with little or no difficulty and with only minor difficulty by inexperienced listeners.	There was considerable degradation of the digital stream resulting in "recognizable but mostly uncopyable" speech. <i>At this level, it takes 5-7 seconds before signal lock is</i> <i>achieved.</i>		
3dB unweighted SINAD (5dB CCITT)	<u>3dB</u> <u>SINAD</u> <u>Test</u>	Analog signal is very noisy: Generally copyable by experienced listeners, with some difficulty by inexperienced listeners.	The receiver would not lock on digital signal: Signal was briefly boosted 10dB to force lock (during the "This is K7" portion) and then reduced to the original level.		
Table 2: Comparing SINAD of an analog signal (as received in "Wide" FM mode) with					

From http://utahvhfs.org/dstar_testing.html

Fusion Performance

- Improved audio quality (higher bit rate)
- More robust (fewer and shorter dropouts)
- Easier (much easier) to use!!!!
- Better suited for Ham needs
- Follows where industry is going (GMSK is no longer used)
- Has a future (TDMA), simplex repeaters

References

- "A Digital Communications Guide for Amateur Radio Operators", Yaesu
- "P25 Radio Systems", Daniels Electronics
- Utah VHF Society, http://utahvhfs.org/
- "All About Modulation", <u>www.complextoreal.com</u>
- "D-Star Uncovered", AE5PL
- http://www.sigidwiki.com/wiki/Signal_Identification_Guide
- http://www.dvsinc.com/index.htm

http://www.etsi.org/technologies-clusters/technologies/digital-

What's Next?

We've been given technology. What can <u>we</u> do with it? Experiment, learn, exchange, grow - our own "iPhone"

Q&A

www.W0MDT.com www.K9EQ.com

Chris Petersen, K9EQ